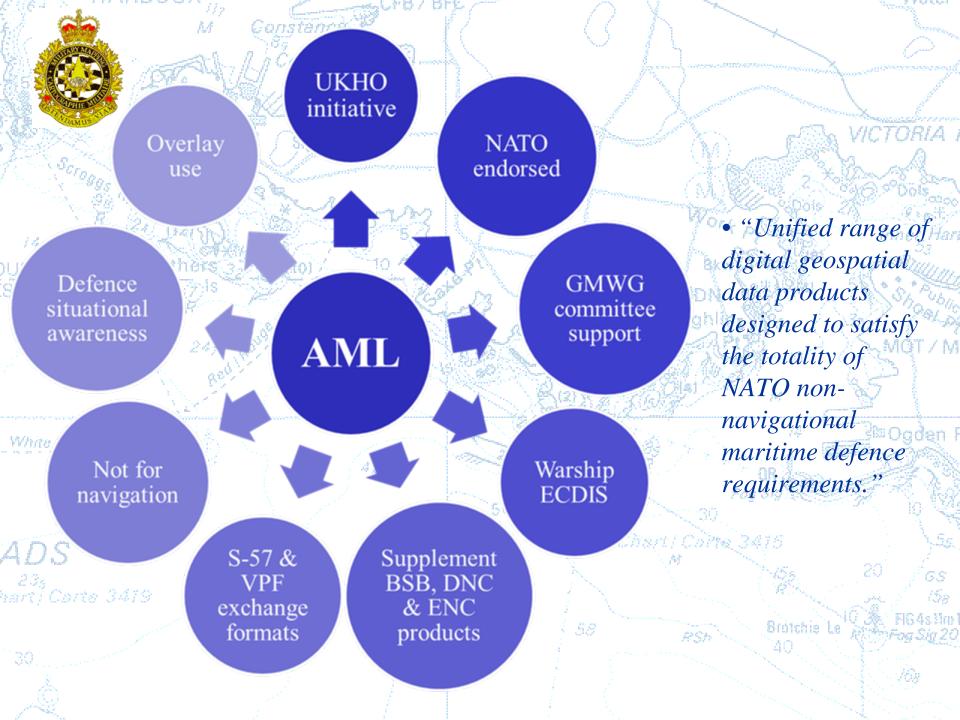
Contour Line Bathymetry Additional Military Layers Production: The Challenge with Supplementing the S-57 ENC

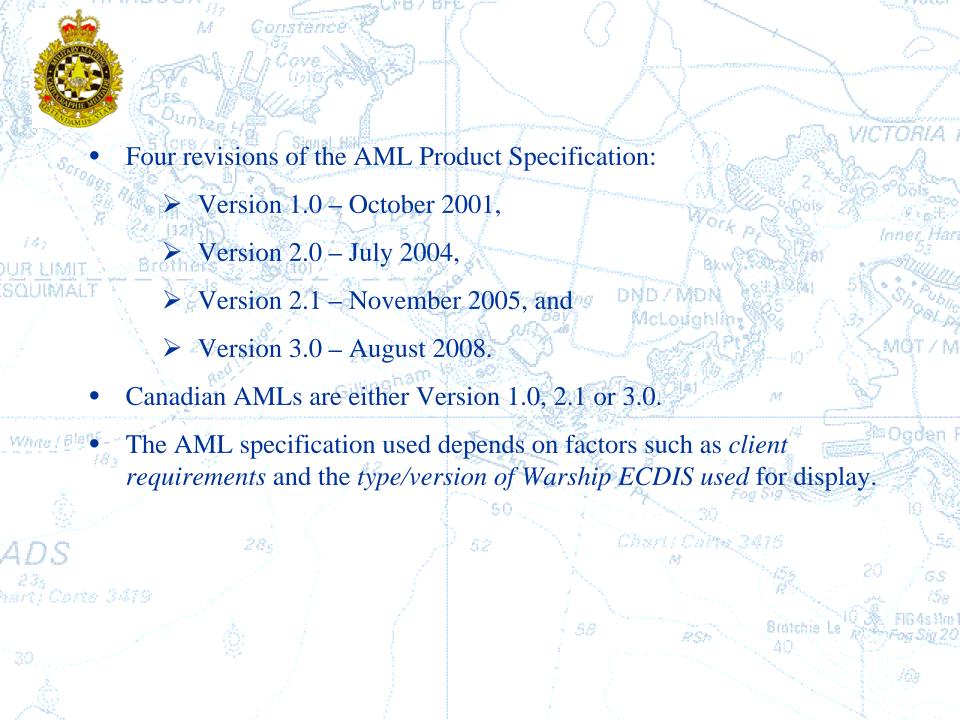
Kevin Jones, B.Sc.
Geomatics Technician
HSO (Esquimalt)

Topics to be Covered

Additional Military Layers (AML)

Constance


- production
- Warship ECDIS (WECDIS) AML Display Issues
- **Closing Thoughts**


Operation PODIUM Contour Line Bathymetry (CLB) AML McLoyighlin

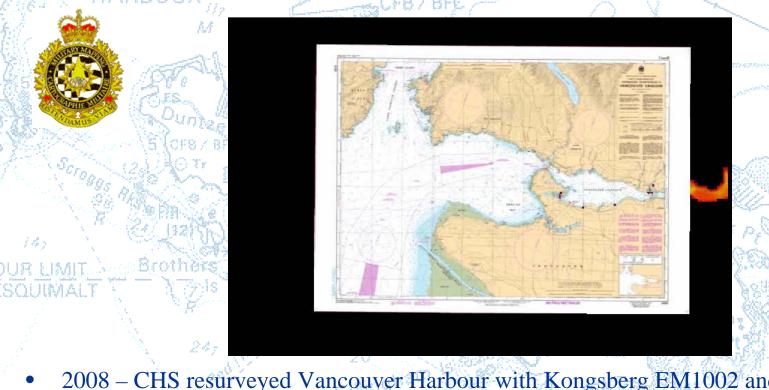
Chart/Carve 3415

Brotchie Le

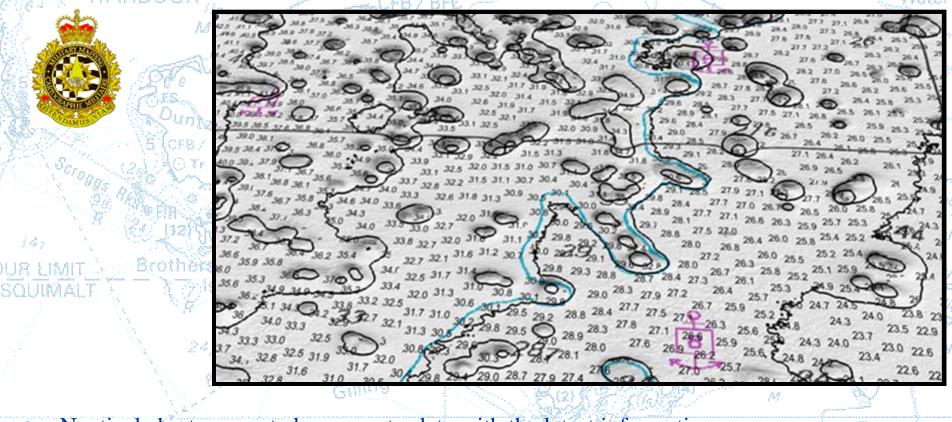
}⊠Ogđen f

COperation PODIUM AML

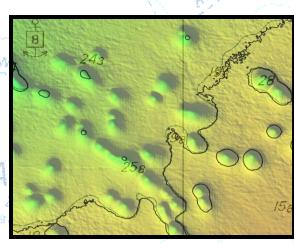
Contour Line Bathymetry (CLB) Production

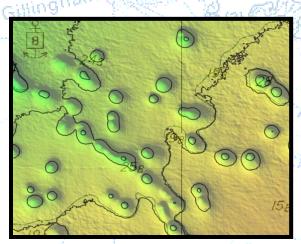


art/Corte 3:

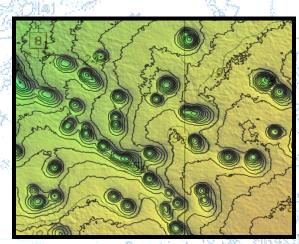

30

- In February and March, 2010, Vancouver and the resort community of Whistler co-hosted the 21st Olympic and 10th Paralympic Winter Games.
 - DND was a key partner within the RCMP-led Vancouver 2010 Integrated Security Unit (V2010 ISU).
- DND support was provided as "Operation PODIUM" through Joint Task Force Games (JTFG).
- The Canadian Navy assisted with maritime surveillance and port security operations.
- ADS HSO produced some Olympic CLB AMLs to support JTFG.


- 2008 CHS resurveyed Vancouver Harbour with Kongsberg EM1002 and EM3002 multibeam echo sounders.
- The pockmarks were formed by sediment liquefaction processes during an earthquake event, possibly the last mega-thrust earthquake of 1700 AD.
- The 200+ depressions range in size from 15m to the size of a football field and from 5 to 15m deep. They are found in water depths between 18 to 65m around English Bay and the approaches to Vancouver Harbour.
 - The pockmarks are not dangerous to surface navigation but they could have been used to conceal subsurface threats such as mines during the Olympic Games.

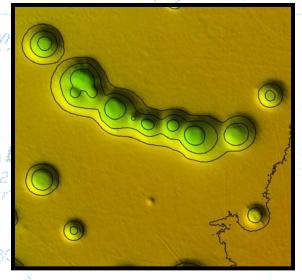

- Nautical charts are not always up-to-date with the latest information.
- Nautical chart sub bottom bathymetry is generalized.
- Produced using the CARIS desktop solutions *S-57 Composer* and *Bathy DataBASE*, an AML Contour Line Bathymetry (CLB) product provides enhanced depth information, represented as points (soundings), lines (depth contours), and areas (depth areas).
 - CLBs are used for purposes such as tactical ocean operations, mine counter measures (MCM), amphibious operations, and anti-submarine warfare (ASW).

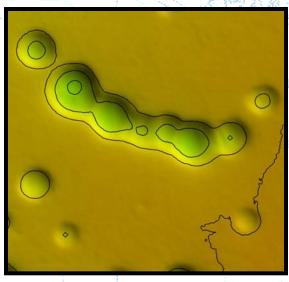
CLB Depth Contours

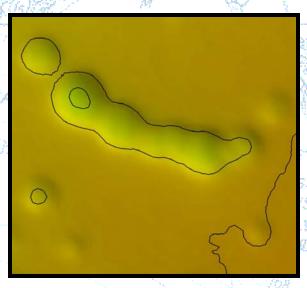

- Determine an appropriate vertical contour interval and contour depth range.
- The contour interval depends on variables such as the AMLs display scale band and the resolution/scale of the existing Product surface.
- It is a balance between showing adequate seafloor detail while minimizing the obscuring effects of supplemental information in a WECDIS.
- HSO used a 1m (0-10m), 5m (10.1-100m), and 10m (+100m) contour interval for the 1:5,000 scale OP PODIUM CLBs.
- Classifying by an arbitrary choice of breaks between categories can hide a clear trend or oversimplify important detail.

2m (depths 0-2m), 5m (2.1-5m), 10m (5.1-10m), 20m (10.1-20m)... contours.

1m (0-10m), 5m (10.1-100m), and 10m (+100m) contours.




1m (0m to +100m) contours.



CLB Product Surface Generalization

- The Product surface scale should match the scale of the CLB.
- Surface generalization affects the level of seafloor detail and influences the shape and distribution of depth curves during the vector contouring process.
- The same 1m (depths 0-10m), 5m (10.1-100m) and 10m (+100.1m) contouring interval rules were applied to the three BASE surfaces below.
- To create the CLBs, HSO used the generalization algorithm *3D Double Buffering* to produce a 5m resolution 1:5,000 scale surface.
- For a coarse resolution surface (e.g. 10m), an alternative contour interval is required (e.g. 1m contours) to show the pockmarks in sufficient detail.

2m Resolution

5m Resolution

10m Resolution

AML Warship ECDIS Display Issues

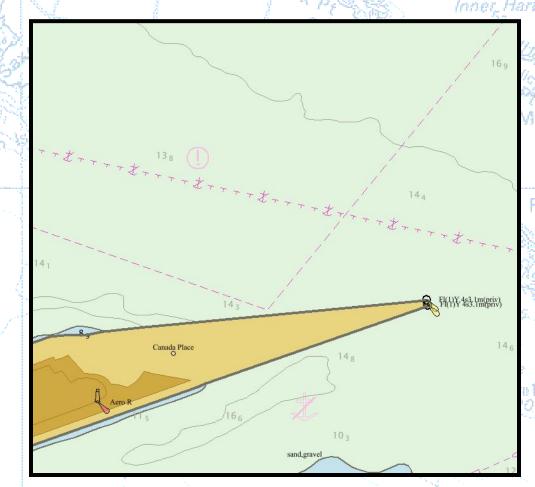
8 January 2005 – USS San Francisco – Near Guam – Full flank – "Uncharted" seamount appeared on the DNC and BA charts but not on classified bottom charts.

21 February 2007 – German mine hunter *M1064 Grömitz* – Near Norway – Radar error (snowy night conditions) – Charted rock.

- Could the use of some types of AML supplemental information impact the display of other information in a Warship ECDIS?
- The dangers of relying on a single source of information.

AML is meant to supplement but not replace navigational products such as the S-57 ENC.

The 'overlay' of information could mask/obscure critical underlying information required for safe navigation.


AML is designed to 'overlay' with other products.

- A Contour Line Bathymetry (CLB) AML will obscure an Warship ECDIS chart display window.
- The Warship ECDIS Offshore Systems Ltd. ECPINS-W Sub was used to demonstrate the display issue. Chart/Carte 3415

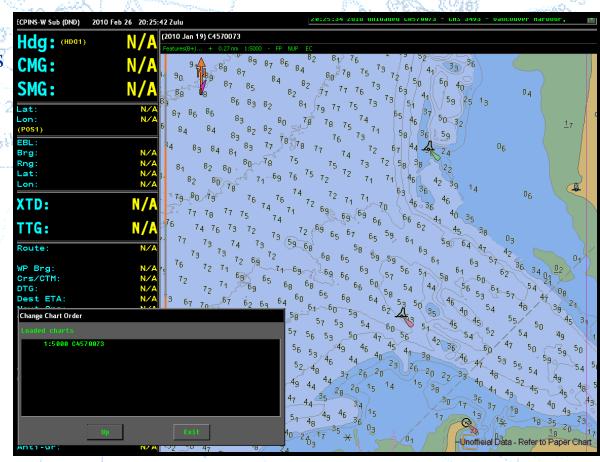
- The ENC below contains features such as: ferry routes, administrative harbour areas, lights, land, restricted areas, shoreline construction and sea-plane landing zones.
- What do you think will happen to the ENC if the AML is 'overlayed'?
- The AML Depth Area objects

 visually obscure all underlying
 ENC information.
- Are there any solutions?
- HSO offers two potential solutions to consider:
 - 1. "Transparent" AML CLB, and
- 4DS2. Enhanced Bathymetry ENC.

Transparent" AML CLB

- An AML consisting of only Depth Contours, Soundings and VICTO Metadata objects.
- Group 1 "Skin of the Earth" Depth Area objects are removed from the CLB.
- Ignore some *S-58 Recommended ENC Validation Checks* (i.e. Test

 519 Group 1 coverage and consistency).
- ENC details are not visually masked by the AML CLB 'overlay'.


ADS hart/Corte 3419

147 148 145 146 15 4 139 138 139 14 139 141 142 143 14 13₈ 13₉ 14₂ 14 139 138 141 141 143 141 14₁ 13₈ 14₁ 1 139 138

Enhanced Bathymetry ENC

- Bathymetry data is inserted as an 'inlay' and not as an 'overlay' within a standard S-57 ENC.
- Uses the standard IHO S-57 ENC Objects and Attributes catalogue.
- Only sections of the original ENC bathymetry is updated where new hydrographic source exists.
- All other ENC chart elements remain the same.
- *M_COVR* Meta object from the AML CLB is inlayed' into the ENC.
- Provides a clear break between original and new bathymetric source.

Closing Thoughts

- HSO (Esquimalt) has been producing AML CLB datasets since June,
 2009 with the OP PODIUM Vancouver Harbour datasets being the first produced in-house by DND.
- How does HSO compare and confirm if the datasets Canada produces are consistent with those of other producer nations?
- Existing CLB Product Specification guidelines are ambiguous and vague.
- Determining an appropriate contour interval and level of gridded Product surface generalization is a user defined process that requires the careful use of cartographic licence.
- No guidance from the GMWG concerning how 'overlay' supplementary datasets should be produced to prevent the obscuring of underlying navigational information in a WECDIS display.
- The types of supplemental AML information required and how the product displays in an electronic charting system should be based on the opinions and advice of practicing mariners.

SUDIMAL

. Trusted 5

ADS

30.

Questions?

Kevin H.M. Jones, B.Sc. Geomatics TechnicianMcLoughline

Hydrographic Services Office (Esquimalt)

PO Box 17000 Station FORCES

Victoria, BC V9A 7N2

Ph: 250-363-5342 Fax: 250-363-4889

E-mail: Kevin.Jones2@forces.gc.ca

arti Certa 3413