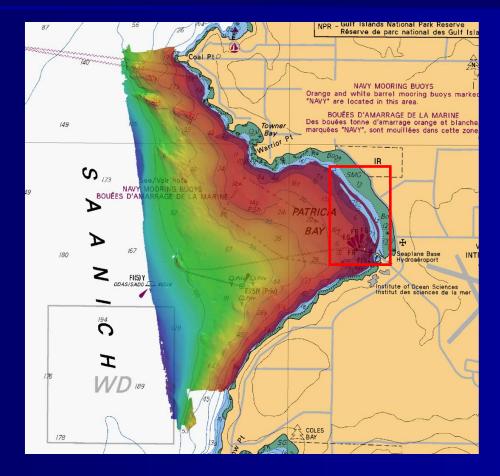
Filling in the white strip: An evaluation of the use of phasemeasuring bathymetric sidescan sonar for nearshore bathymetric and habitat mapping


> R.M. Hare, P. Eng., C.L.S., Kalman Czotter, C.L.S. and Jacques Gagné, Canadian Hydrographic Service (CHS) and

> > Doug Lockhart, Chief Hydrographer, Teledyne RD Instruments

Overview

Statement of the problem A possible solution A proposed test site Original Methodology (the plan) Actual methodology (a back-up plan) Results The way forward

The "white strip"

CHC2010 Quebec City

S3.1 Hare et al.

Shoal Seeker with C3D bow mount

CHC2010 Quebec City

CHS system specs

- Teledyne Benthos C3D phase-measuring bathymetric sidescan sonar
- Coda Octopus F185 motion sensor
- PPK (for primary antenna) into HIPS
 - Inertial Explorer requires development;
 - POSPAC won't accept F-185 format.
- Hypack 2009a data logging
- CARIS HIPS 7.0 data processing includes refraction correction (but not re-ray-tracing)
- AML surface sound speed (not read in real time, manually entered in C3D software) and profiles

Patricia Bay at two tides

Workflow

- Collect and process point, line and area features by terrestrial positioning techniques at low tide in intertidal areas (ground truth)
- Use established hydrographic survey tools that meet or exceed IOS Order 1a in slightly deeper water areas (EM3002)
- Collect coincident bathymetric sidescan data (Hypack) for comparison and process using existing MB processing tools (CARIS HIPS)

Terrestrial ground truth at low tide

CCGS Otter Bay (EM3002)

Proposed methodology

- Comparison of EM3002 and C3D bathymetry
 - Depths over flat seafloor
 - Positions of pier pilings
- Comparison of depths on point and linear features (positioned by terrestrial PPK and DGPS)
- Comparison of area features delimited by terrestrial DGPS (and/or ortho-imagery) and C3D backscatter mosaic

Proposed research questions

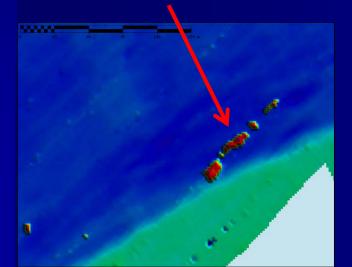
- Can C3D acquire bathymetry to Order 1a position and depth uncertainty requirements?
 - Under what conditions?
 - Over what proportion of the swath?
- Can C3D reliably detect Order 1 or Special Order point targets?
 - Under what conditions?
 - Over what proportion of the swath?
- Can C3D backscatter identify habitat areas reliably?
- Can C3D backscatter be used to reliably locate small point targets (sawed-off piles) and linear features (pipelines)
- What are the operational limitations of the C3D for:
 - Navigational requirements?
 - Habitat mapping?

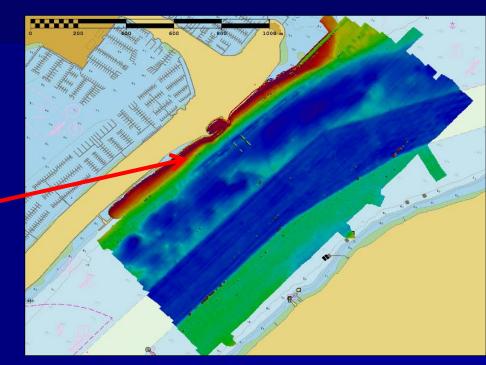
The back-up plan

 Acquire a test data set in San Diego using Fugro C3D system (working)
 Comparison of C3D bathymetry:

 At cross-check lines
 Against Reson 7125 reference surface

Answer the following:


Modified research questions


Can we develop an efficient and reliable methodology for C3D surveys?

- Efficiency:
 - Swath greater than 5 times water depth
 - Data processing time on the order of one-to-one with acquisition time
- Reliability:
 - Can C3D acquire bathymetry to Order 1a position and depth uncertainty requirements?
 - Under what conditions?
 - Over what proportion of the swath?
 - Can C3D reliably detect Order 1 or Special Order point targets?
 - Under what conditions?
 - Over what proportion of the swath?
 - Can C3D backscatter identify habitat areas reliably?
 - Can C3D backscatter be used to reliably locate small point targets (sawed-off piles) and linear features (pipelines)
 - What are the operational limitations of the C3D for:
 - Navigational requirements?
 - Habitat mapping?

Processing approach (1)

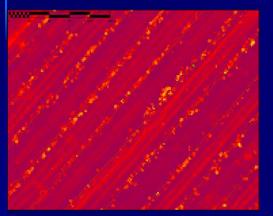
- An iterative processing approach is used to reduce manual editing.
- A CUBE surface is built from down sampled data
- Obvious fliers are manually removed

 Relative data volumes for this area:

 8101:
 0.9 GB

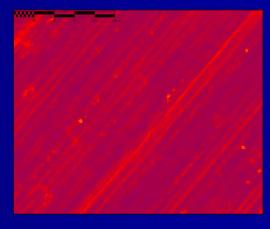
 7101:
 1.8 GB

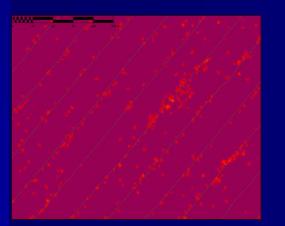
 7125:
 12.5 GB


 C3D:
 25.6 GB

S3.1 Hare et al.

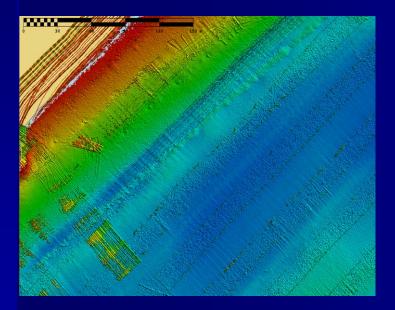
Processing approach (2)


A 1-sigma surface filter is applied to edited soundings

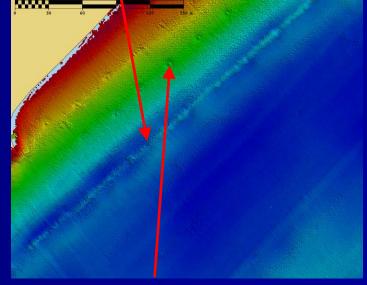

Before Surface Filter

Standard Deviation

After Surface Filter

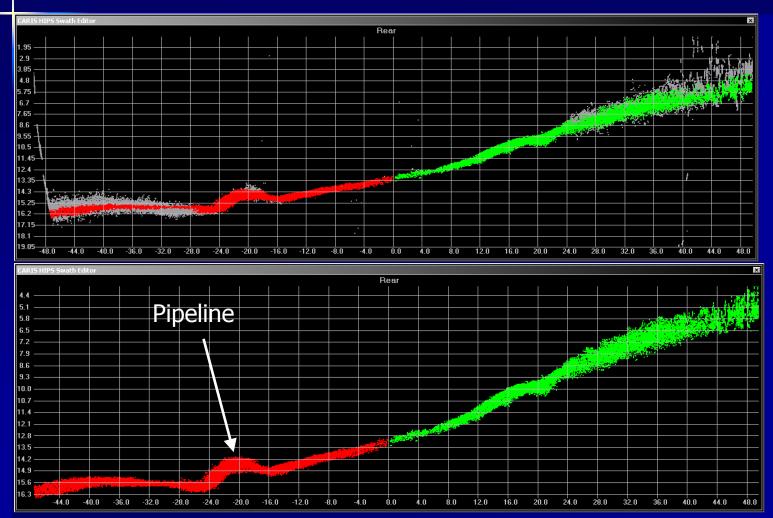


Hypothesis Count


S3.1 Hare et al.

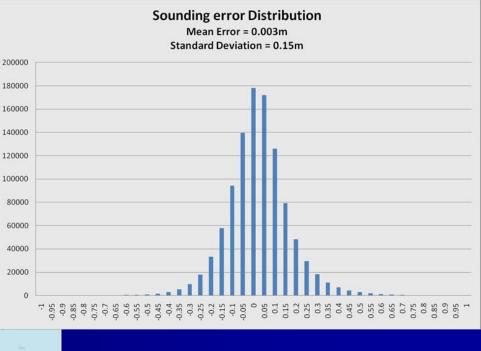
Processing approach (3)

Next, the full resolution data set is imported and cleaned using the surface filter and the low resolution surface



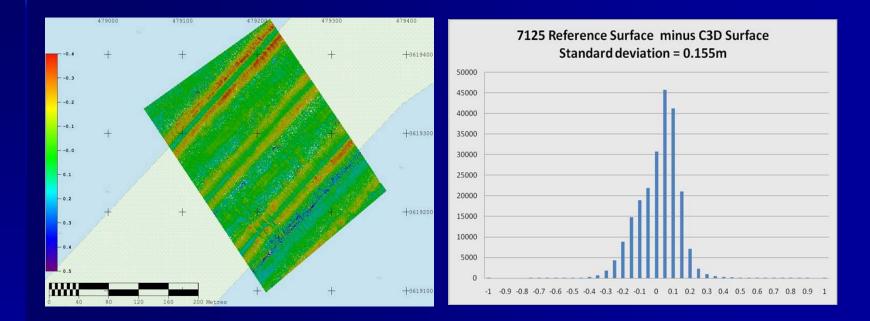
Pipeline

Anchor blocks


Cross-section pre and post CUBE filter

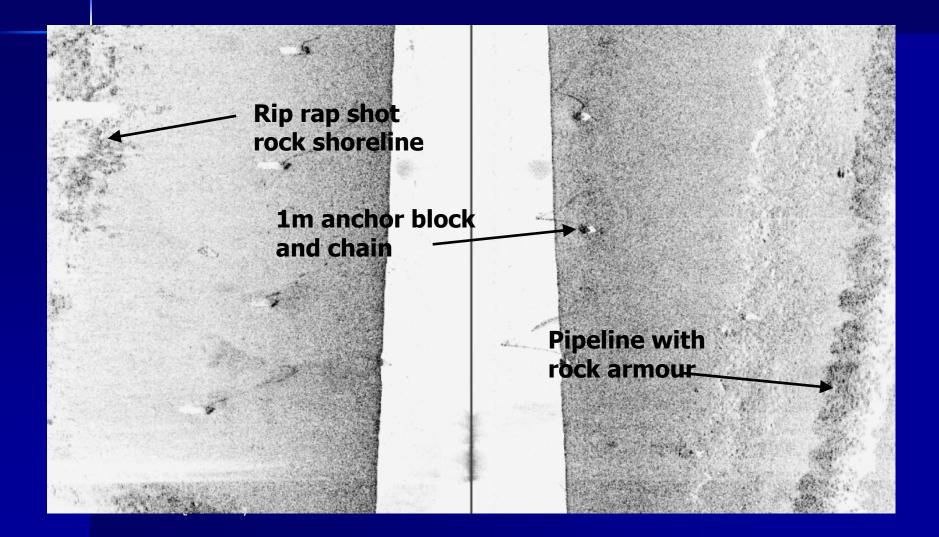
17

ResultsTie Line comparison:



CHC2010 Quebec City

S3.1 Hare et al.


7125 reference surface

C3D difference cross-section

Sidescan waterfall

Conclusions

Reliability:

- Can we say meets Order 1a TPU-H? Using POSPAC yes
- TPU-V <= 30 cm (95%) yes (Order 1, not Special)</p>
- Target detection 1 m anchor blocks yes (Special)
- Can different seabed types be reliably identified? Yes

• Efficiency:

- Does it achieve 5 times depth swath while meeting above specs? 5 times in deeper; more than 5 times in shallower
- What is DA:DP \sim 1:1

Next steps - 2010

- Get CHS C3D system working
- Improved documentation for both acquisition and processing. This documentation will be more of a user guide than a system manual.
- Acquisition and processing flows will be defined.
- System timing will be improved through the use of an NTP server.
- An additional serial port will be added to the C3D transceiver to improve timing of ancillary sensors.
- Implementation of an autogain

Next steps – longer term

Planned improvements in 2011 are:

 Improved bottom following algorithm
 Development of dynamic uncertainty

values.

Acknowledgement

The authors would the thank Fugro Pelagos for their generous support and assistance

Thank-you

And a second and a second

2009/06/22