

Hydrography at IHO cat A level:

Scientific Education, at Sea Training, and Interaction with the Industry

N. Debese, R. Moitié, N. Seube

CHC 2010 - 2

Introduction

Course Outline

Hydrographic Survey training analysis

Conclusion

- Located in Brest: takes benefits of the French marine science institutes
- Hydrographic cursus exists since 1971
- 30 graduated students: the largest cat. A course in EU

Conclusion

Hydrographic Survey training

Conclusion

Conclusion

Hydrographic Survey training

Outline of the course modules

Year 2

Summer training: 2 months in industry

Outline of the course modules

Introduction

Course Outline

Hydrographic Survey training

Conclusion

PRACTICALS:

The **hydrographic** survey

The summer internship

The **pre-dredging** survey

The **oceanographic** survey

A RTK GPS system

Sound velocities probes

A land based RTK system

A GPS compass from Hemisphere

Two SBES: Simrad-mesotech 210kHz, 120kHz

A MRU6 from Seatex

An Octans 4 from IXSEA

Two MBES: A Reson8101, a Tritech Horizon

A sub-bottom profiler: Tritech 210kHz-20kHz

A CTD gauge from Seabird

Two Tide gauges

Practicals

The survey vessel "Panopée"

Bathymetric Digital Terrain Model: Basin #6 in Brest harbor

The **hydrographic** survey

Teams of three students

Tasked to survey small areas of BREST harbor

The project is graded with respect to:

Quality and confidence results

Methodology

Project management

Communication

Three different systems:

SBES (or mechanical profiler)

MBES

Side scan sonar

The **Summer Internship**

In a foreign organization

Dredging company

Survey company

Hydrographic service

This period must include at least:

3 weeks at sea work

5 weeks at office work

Minimum duration: two months

Repartition of the students for the 2008-2009 series Survey companies: 10 students

Dredging companies:

9 students

Hydrographic offices:

6 students

University of oceanographic labs: 5 students

Students must:

Deliver a written report

Perform a project defense

Survey systems

Inertial measurements

Mechanical integration

Acquisition devices and software

Data processing and visualization tools

MANY DIFFERENT Acoustics

Positioning

Planning survey with minimum

Hydrographic data

Gathering

Processing

Analyzing

WIDE VARIETY OF SKILLS

Physics

Applied mathematics

Information technologies

Data quality Assessment

To deliver a complete education in a complex field

Aims of the new training course

Cat. A level

on and changing

Aiming at taking the responsibility of a complete survey work

Being reactive **Autonomous**

Marine institutes

Developers of hydrographic systems and tools

Industry

INTERACTIONS

Course Outline

Hydrographic Survey training

Conclusion

Analysis

Progressive practical training based on:

Alternating

practical with theoretical course modules

to develop their ability to think independently

Alternating

training periods within the industry with academic education

to discover other point of views or methodologies

Performing

a master thesis in focusing on a scientific subject related to hydrography

to initiate them to applied research which can be very helpful for their future adaptation to new technologies.

Conclusion

Academic

Main topics

Practicals

Internships

scheduling

Alternating practical with theoretical

Semester 4

Both

Master

thesis

pre-dredging survey

Students are asked to perform the survey from A to Z

An example of student work for 2009 survey

project session

CHC 2010 - 13

CONCLUSION:

- Close cooperation with both survey industries and hydrographic equipment and software companies
- Necessity of wide and deep scientific knowledge for hydrographic surveyors (quality assessment skills, more and more complex tools)
- Students have to learn how to think independently in a survey context
- Good feedback from the industry: 100% employment rate just after graduation