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Abstract 

In August 2007, Fugro Pelagos collected data with the SHOALS-1000T bathymetric LiDAR 
system in Shilshole Bay, Seattle, for NOAA OCS.  Data were collected at various spot spacings, 
altitudes, and times of day, over an area previously surveyed with an 8101 multibeam echo 
sounder.  In addition, the area contained targets of known size, built and placed on the seafloor 
by Fugro Pelagos in 2005. 

Previously, when comparing LiDAR datasets to other LiDAR or acoustic datasets, the 
comparisons have always presumed that one control dataset is ultimately correct, with no errors.  
All error is attributed to the second dataset.  Surface and target analysis methods have therefore 
been somewhat subjective.  

However the use of TPU takes into account the fact that each depth or elevation point is an 
estimate with an associated uncertainty.  These uncertainties can then be used by the CUBE 
algorithm to build an attributed bathymetry surface:  now a required standard deliverable for 
NOAA OCS.   

This paper discusses how TPU and CUBE were used for the first time to compare LiDAR 
bathymetry and acoustic datasets.  It will include a review of the difficulties in developing the 
process, the parameters used and the results of the analyses. 

Introduction 

In August 2007, Fugro Pelagos collected data with the SHOALS-1000T bathymetric LiDAR 
system in Shilshole Bay, Seattle, for NOAA OCS.  Data were collected at various spot spacings, 
altitudes, and times of day, over an area previously surveyed with an 8101 multibeam echo 
sounder.  In addition, the area contained targets of known size, built and placed on the seafloor 
by Fugro Pelagos in 2005.  Data were collected to study the Total Propagated Uncertainty (TPU) 
of the SHOALS-1000T LiDAR measurements and the system’s target detection capabilities.   

Target detection tests have been conducted previously over the Shilshole area, for the LADS, 
SHOALS-400 and SHOALS-1000T sensors (McKenzie et al., 2001; Lockhart et al., 2005).  
However previous comparisons, have always presumed that the multibeam control dataset is 
ultimately correct, with no errors.  Therefore, all error is attributed to the LiDAR dataset.  
Surface and target analysis methods have consequently been somewhat subjective. In addition in 
areas with many targets, they can become very labor intensive.  Target detection for 
hydrographic surveys is currently specified by the International Hydrographic Organization 
(IHO) Special Publication No. 44 (IHO, 1998). 

The use of TPU takes into account the fact that each depth or elevation point is an estimate with 
an associated measurement uncertainty.  These uncertainties can then be used by the Combined 
Uncertainty and Bathymetry Estimator (CUBE) algorithm developed at the University of New 
Hampshire (Calder and Mayer, 2001) to build an attributed bathymetry surface:  now a required 
standard deliverable for NOAA OCS.  
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If surfaces can be built, with knowledge of the uncertainty, then there is the potential to use the 
CUBE algorithm to compare these different density multibeam and LiDAR datasets more 
objectively, including for target detection.  In theory this would allow the analysis of the final 
surfaces to see if they represent the same seafloor, and targets, once the uncertainty of the 
measurements is taken into account. 

Before the CUBE analysis can be conducted however, TPU models must exist for each dataset.  
Although TPU is now commonly used for multibeam data processing, a TPU model did not exist 
for the SHOALS-1000T data.  Therefore the first step was to develop this uncertainty model. 

Data Acquisition 

Shilshole Bay in Puget Sound, Washington has been used extensively in the past by NOAA OCS 
and Fugro Pelagos to conduct multibeam sonar and LiDAR verification surveys.  For this study, 
multibeam data was acquired with a Reson 8101 multibeam echosounder (MBES) in 2005, 
shortly after manufactured targets were placed on the seafloor. Figure 1 shows a color-coded 
DEM of the MBES coverage, the location of the targets and the planned extents of the LiDAR 
acquisition. 

 
Figure 1 – Survey Location, Shilshole Bay, Puget Sound, WA 

The targets themselves are boxes constructed from steel, as seen in Figure 2. Three sizes were 
constructed: 2x2x2m, 2x2x1m and 1x1x1m.  One target of each size was placed 7m water depth 
(reduced), and another set of targets was placed at approximately 12.5m water depth, as 
indicated in Table 1.  Although initially reflective, over time these targets reflectivity has become 
very similar to that of the surrounding seafloor (Figure 2). 
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Table 1 Shilshole Target Descriptions 

Target ID Target Description Latitude Longitude Approximate Depth (m) 

A 2x2x1m 47-40-16.42N 122-25-12.67W 7 

B 2x2x2m 47-40-16.06N 122-25-13.47W 7 

C 1x1x1m 47-40-15.53N 122-25-14.46W 7 

D 2x2x1m 47-40-17.45N 122-25-21.19W 12.5 

E 2x2x2m 47-40-16.38N 122-25-23.01W 12.5 

F 1x1x1m 47-40-15.25N 122-25-25.10W 12.5 
 

 

 
2x2x2m Target 

 

 
2x2x1m Target 

 
 

 

Figure 2  - Targets:  Constructed and on the Seafloor in December 2007 

The SHOALS-1000T survey took place on August 27 to 29, 2007 during which the following 
data were collected: 

• Bathymetric LiDAR data from the SHOALS-1000T 

• Digital Aerial Photography from the SHOALS-1000T 

• GPS Ground Control 
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The hydrographic LiDAR flight lines were planned to collect data from the approximate location 
of the mean high water (MHW) line out to the 20m depth contour. The survey limits included the 
area where targets were set on the seabed in 2005.  

Survey flight missions were conducted at various spot spacing, flight altitudes, flight line 
directions and time of the day as shown in Table 2. In all instances lines were planned with 20% 
overlap. These multiple datasets were collected so that percentage of data coverage (i.e. 100%, 
200%, 300%, etc…), flight altitude, flight direction and time of day could be assessed to see how 
each factor may or may not affect bathymetric LiDAR target detection. 

Table 2 Bathymetric LiDAR Acquisition Missions 

Mission Spot Spacing  
(m) Altitude Direction Time of Day 

1 3x3 400m E àW Day 

2 3x3 400m W à E Day 

3 3x3 400m E à W Day 

4 3x3 400m E à W Night 

5 3x3 400m W à E Night 

6 3x3 300m E à W Night 

7 3x3 300m W à E Night 

8 2x2 400m E à W Day 

9 2x2 400m W à E Day 

10 4x4 400m E à W Day 

11 4x4 400m W à E Day 

LiDAR Data Processing 

Raw SHOALS-1000T data from the airborne system were downloaded into the Optech SHOALS 
Ground Control System (GCS) on Windows XP workstations. GCS includes links to Applanix 
POSPac software for GPS/inertial processing and to IVS Fledermaus software for data 
visualization and 3D editing. GCS was used to apply the KGPS/inertial solutions, apply tide 
data, auto-process the LiDAR waveforms, edit data and export point cloud files to ASCII XYZ 
format files.  The ASCII XYZ files were used for TPU calculations. 
Edited data were also imported to CARIS HIPS for analysis with the CUBE algorithm. 

In order to assess the affect of data coverage percentage, flight altitude, flight direction and time 
of day, on target detection,  flight missions were organized into processing datasets (Table 3) 
prior to data editing,.  Each dataset was processed independently, so that the data editor did not 
gain additional knowledge by looking at all flight missions at once. 
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Table 3 Processing Datasets 
Dataset Missions Included 
A 400 m @ 3x3 200% coverage with flight in opposite directions 
B 400 m @ 3x3 200% coverage with flight in same directions 
C 400 m @ 3x3 200% coverage with flight in opposite directions at night 
D 400 m @ 3x3 300% coverage 
E 400 m @ 3x3 400% coverage 
F 400 m @ 3x3 500% coverage 
G 300 m @ 3x3 200% coverage with flight in opposite directions 
H 400 m @ 2x2 200% coverage with flight in opposite directions 
I 400 m @ 4x4 200% coverage with flight in opposite directions 

Derivation of SHOALS-1000T TPU Model 

The TPU can be understood as the sum of all random and systematic uncertainties in the 
measurement process, including the uncertainty contribution of all sensors embedded in the 
SHOALS-1000T system. Determining each sensor’s uncertainty independently to develop a TPU 
is a work in progress.  Due to the complexity of the physical interaction of the laser pulse with 
the sea surface, sea water and sea floor an analytical TPU may not be possible. Therefore, at this 
time, an alternate method must be used to derive a TPU estimate for the SHOALS 1000T system. 

This study uses depth variance as a proxy for an analytical TPU.  Because the bathymetric 
LiDAR footprint spreads with depth, as the light scatters and absorbs in the water column, the 
SHOALS data were separated into ASCII XYZ files with discrete depth ranges, starting at 2 m 
water depth down to 16m, at 2m step increments.  For each depth interval, variance is estimated 
as a function of horizontal radius.  This variance function is then calculated for a radius of zero 
giving vertical variance for that depth interval. 

For all depth intervals, total variance is expected to grow with each incremental search radius; 
however, variance growth as a function of distance, defines a function that allows the estimation 
of variance at zero radius, which cannot be resolved directly. A variogram is used to determine 
the node variance when the constant of a polynomial fit is found, as shown in Figure 3. Variance 
functions for each depth interval are shown in Figure 4. 
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Figure 4  - Variance Function for each Depth Interval (including Zero Radius) 

Calculated node variances for each depth interval are shown in Figure 5. From this, one can see 
that variance fluctuated between 0.07-0.09m to 15 m water depth and then grew to about 0.125 
m at 20m water depth. 
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Figure 3  - Variogram for Determining Node Variance 
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Figure 5 –Variance as a Function of Water Depth 

This total variance estimate ( ) calculated as described above, includes the variance from the 
sensor measurements as well as the variance inherent in the seafloor ( ) due to slope and 
roughness. Therefore to produce an estimate of sensor measurement variance (  ), an estimate 
of seafloor variance needs to be calculated or modeled and removed from the total variance, as 
presented in the form: 

 
To model the natural seafloor variance in the LiDAR data, introduced by slope and bottom 
roughness, a morphology trend was observed and determined from the gridded multibeam DEM 
surface. The slope gradient, and the amplitude and frequency of the general bottom roughness, 
were used in the creation of a synthetic surface grid model. Variance analysis was conducted on 
the synthetic surface using the variogram approach to provide an estimate of variance solely 
from the slope and bottom roughness. 

Different synthetic surface point densities (0.5m, 1m, 2m and 3m) were used to account for 
potential sub-sampling effects. Figure 6 shows the results of the synthetic surface variance 
analysis showing clearly that variance as function of distance remains constant and follows a 
linear trend not affected by different point density. It was found that the variance for the modeled 
synthetic seafloor averaged 0.015m.  However, due to the use of a synthetic surface, it is likely 
that this is a low estimation of actual seafloor variance.  Estimated seafloor variance was then 
removed from the total variance to provide an estimate of the sensor variance.  The square-root 
of final sensor variance (standard deviation) was then used as the TPU estimate, with the value 
varying dependent on water depth.  
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Figure 6 – Variance of the Synthetic Seafloor at Varying Point Density 

Table 4 shows the calculated TPU for the Shilshole Bay survey, where maximum bottom depth 
detection was at about 16 meters. TPU was attributed to each LiDAR depth in CARIS HIPS and 
used to create attributed uncertainty DEM products.  

It should be noted that uncertainty calculated still includes any uncertainty present from the tide 
application.  It would be beneficial to repeat this exercise using PPK GPS LiDAR data on the 
ellipsoid, to provide a result which more closely represented the sensor uncertainty alone. 

Table 4 also shows for comparison the depth accuracy specification for IHO Order 1 given, in 
the form: 

=  

where d is water depth, and values for a and b ar e 0.5 m and 0.013 m, respectively.  

Comparing numbers in columns 5 and 6, it can be deduced that accuracy for the SHOALS-
1000T bathymetric LiDAR  depths in Shilshole Bay are within the acceptable accuracy limits of 
IHO Order 1. 

It is important to note that TPU estimation using the method presented above is valid for the 
water conditions at the time of the survey.  Bathymetric LiDAR measurement uncertainty will 
vary depending on local water column conditions and seafloor reflectance.  However, if water 
conditions and depth of bottom detection are very similar in other locations sharing common 
environments, the model can be applied.  To use in a different environment, TPU would need to 
be recalculated.  However with the method described, this is possible.   

This method can also be refined by the use of Kriging, which will allow uncertainty relationships 
in the along-track and across-track direction to be modeled.  This is currently being examined by 
Fugro Pelagos. 
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Table 4 Final Sensor Variance and TPU Values Compared to IHO Order 1 
1 2 3 4 5 6 7 

Depth 
(m) 
 

Total 
Seafloor 
Variance 

 

Sensor 
Variance 

 

Sensor 
StDev 
(TPU) 

Sensor    
2-StDev 

IHO Order 1      
(2-StDev) Status 

1 0.094 0.065 0.256 0.511 0.564 Passed 
2 0.083 0.058 0.240 0.481 0.501 Passed 
3 0.085 0.059 0.243 0.486 0.502 Passed 
4 0.072 0.050 0.223 0.446 0.503 Passed 
5 0.072 0.050 0.223 0.446 0.504 Passed 
6 0.071 0.049 0.222 0.443 0.506 Passed 
7 0.070 0.048 0.220 0.440 0.508 Passed 
8 0.064 0.044 0.210 0.419 0.511 Passed 
9 0.063 0.043 0.208 0.416 0.514 Passed 
10 0.065 0.045 0.212 0.424 0.517 Passed 
11 0.067 0.046 0.215 0.430 0.520 Passed 
12 0.067 0.046 0.215 0.430 0.524 Passed 
13 0.076 0.053 0.230 0.459 0.528 Passed 
14 0.067 0.046 0.215 0.430 0.532 Passed 
15 0.092 0.064 0.253 0.507 0.532 Passed 
16 0.090 0.063 0.250 0.501 0.537 Passed 

Comparison of LiDAR and Multibeam using CUBE 

CUBE transforms measured points at relatively random locations into regularly spaced depth 
estimates in a grid. On each grid node, four values are produced: depth, uncertainty (from depth 
TPU), number of hypothesis and hypothesis strength. Depending on how close or sparse 
vertically contributing depths are to resulting node value, the algorithm develops more than one 
potential depth candidate but selects one as the most likely one.  

CUBE was designed to aid in the processing of dense multibeam echosounder datasets.  
However it is not commonly used on sparser bathymetric LiDAR datasets.  Some experiments 
were run to identify suitable CUBE parameters to be used with the LiDAR data points. In the 
example below (Figure 7), which shows 400% LiDAR coverage, there are 5 LiDAR hits on the 
target. CUBE successfully generates a likely primary hypothesis (green cubes) from these 5 data 
points which represent the target. However the primary hypothesis representing the target is 
relatively weak.  The cubes in the image indicate the uncertainty of the measurement in the 
vertical, with the strength of the hypothesis indicated by the width of the cubes. The CUBE 
algorithm also generates an alternate hypothesis, shown by the red cubes.  
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Figure 7 - CUBE Hypotheses for Target B (2x2x2m) in 7m Water Depth with 400% Coverage 

In almost all cases, when LiDAR acquired a data point on a target, CUBE correctly created a 
primary hypothesis, which in some way represented that target.  This is likely due to the 
sparseness of the data, which in many cases with 200% LiDAR coverage or less, prevents the 
possibility of multiple hypotheses. However the primary hypothesis over the targets was usually 
weak.  In a typical product flow, the primary CUBE hypothesis is then used to create a surface.  
But if the hypothesis is weak, the surface will not be ‘pulled’ to the top of the target and will not 
therefore accurately represent the shallow data points.  Further work is still required in order to 
identify a set of CUBE parameters that will provide a strong primary hypothesis on the targets 
when they are observed in the LiDAR data. 

In addition, and perhaps more detrimental to this experiment, there were also problems when 
using CUBE to create the multibeam hypotheses.  In Figure 8, the image on the left shows a 
cross section of multibeam data over target B. The CUBE processing example, shown on the 
right, depicts the target depth hypotheses in red, which means they are not selected as the most-
likely primary hypothesis depths, despite the number of hits on the target. More work is required 
to select suitable CUBE parameters, which will successfully select the target as the primary 
hypothesis. Fugro Pelagos continues to pursue this problem. Until these parameters are 
identified, it is not possible to complete the goal of comparing the two datasets, accounting for 
their uncertainties. 

Multibeam Data Over Target B 

 
 

CUBE Hypotheses created from Multibeam 

 

Figure 8 - MBES Data in CARIS, and the CUBE Hypothesis 
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Conclusions 

TPU can be estimated for LiDAR depth intervals through variance node analysis. The analysis 
can be performed over a small control area in water conditions very similar to the actual main 
survey area, and therefore could be calculated on a project-by-project, or area-by-area basis.   

The calculated TPU presented here for Shilshole Bay still includes any uncertainty present from 
the tide application to the LiDAR data.  It would be beneficial to repeat this exercise using PPK 
GPS LiDAR data on the ellipsoid, to provide a result which would more closely represent the 
sensor uncertainty alone. 

This methodology for calculating TPU should be further refined and automated with the use of 
Kriging. 

At the time of writing, CUBE has not been successfully used to compare the LiDAR and 
multibeam datasets.  However the authors feel that with further effort, particularly in choosing 
suitable CUBE parameters for hypothesis selection, this can be accomplished. 
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