Canadian Hydrographic Conference and National Surveyors Conference 2008

Integration of Hydrographic Data Products in a Global Web Based 2D and 3D GIS

Session 5

Data integration and management: problems and solutions

Calado, A.; Abreu, M. P.; Chumbinho, R.; Silva, A.; Sousa, L. and EMEPC Group

Bringing Land and Sea Together

May 2008

SUMMARY

- 1. Introduction
- 2. Background
- 3. InforM@r Project
- 4. Hydrographic Products
- 5. Results
- 6. Conclusions

1. INTRODUCTION

SEAFLOOR MORFOLOGY

One of the main subjects of ocean research

High quality bathymetric data

This potential hasn't been fully explored

Possible Solution Web-GIS

PORTUGUESE PROJECT FOR THE EXTENSION OF THE CONTINENTAL SHELF

Integrated in works of Portuguese Task Group for the Extension of the Continental Shelf

Data colected through portuguese navy hydrographic vessels

Multibeam echo sounders

+ 1.000.000 + 300 .000.000 km² surveyed soundings

2. BACKGROUND

INFORM@R PROJECT

Objective: Integrate ocean data from different disciplines

Support EMEPC works

Establish a framework to assemble all the Portuguese ocean data

António Calado May 2008

3. HYDROGRAPHIC PRODUCTS

INFORM@R PORTAL

www.emepc.gov.pt

InforM@r website was created to make available some of the ocean data collected by EMEPC

BATHYMETRY AS A FUTURE DEVELOPMENT AREA IN INFORM@R WEBSITE

• Include EMEPC bathymetric data

• Link it to other complementary geographic information platforms

Types of products considered

3. HYDROGRAPHIC PRODUCTS

PRODUCTS VISUALIZATION

Data viewer platforms considered:

- Local geographic information viewer, namely ArcIMS, which actually supports the InforM@r web site;
- Global geographic information viewers, e.g. Google Earth, NASA World Wind or Microsoft Virtual Earth;
- Dedicated software to visualize and explore geographic datasets.

BATHYMETRIC DATA

Owned by EMEPC

High resolution data collected using multibem echo sounder systems

Product generation for other survey areas follows a similar approach

Objective

To make available a geographic dataset better than other public data available for the region

> Resolution; > Quality

4. RESULTS

4. RESULTS

GLOBAL GRIDS

2' resolution

GEBCO

1' resolution

António Calado May 2008

4. RESULTS

PRODUCT GENERATION

Product development guidelines:

- Use EMEPC web page as the central platform for distribution;
- Use a global geographic information viewer in the product distribution, allowing the users to combine EMEPC information with their own geographic data;
- Develop solutions that allow a higher interaction between the users and the geographic information through basic exploration tools;
- Develop bidimensional and tridimensional products, increasing the flexibility for the users.

3D

Google Earth
Fledermaus

4. RESULTS

PRODUCT 1 – INFORM@R PORTAL

Data Preparation

Surface Generation and Format

Availability of Data throught InforM@r Webpage (ArcIMS)

4. RESULTS

PRODUCT 2 – KML 2D

Surfaces Conversion to KML files

Screen Overlay Generation

Final KML File Creation

4. RESULTS

PRODUCT 3 – KML 3D

Initial Data Resampling

TIN Generation and Editing

ArcGIS Tool Development – Export TIN to KML file

KML Generation and Formating

4. RESULTS

PRODUCT 4 – FLEDERMAUS

Data Formatting

Grid computation (Avggrid)

Surface Formatting (DMagic)

Fledermaus Object Generation

5. CONCLUSIONS

BATHYMETRY DERIVED PRODUCTS

High quality bathymetric information potential is being partially wasted

Web-GIS can have an important role in data potential maximization

It doesn't exists one unique bathymetric product that satisfies all the determined requirements

Diversification

5. CONCLUSIONS

ArcIMS Allows the combination of bathymetry with all InforM@r data

KML 2D Allows the combination of batymetric data with user's geographic information

KML 3D Integrate advantages of a 3D surface into a GIS application acessible to the user

Fledermaus Permits a higher interaction between the user and the surface

FUTURE WORK

- Make all bathymetric products available for all EMEPC surveyed areas (after project conclusion May 2009)
- Combine other kinds of geographic data with the develop surfaces, namely in 3D products

... thank you for your attention!

António Calado May 2008