Comparing LiDAR and Acoustic Bathymetry Using TPU and the CUBE Algorithm

Carol Lockhart, Doug Lockhart, José Martinez
Fugro Pelagos Inc, San Diego, California
Fugro Pelagos collected data with the SHOALS-1000T bathymetric LiDAR system for NOAA’s Office of Coast Survey.

Objectives:
- Study the Total Propagated Uncertainty (TPU) for the SHOALS-1000T system.
- Examination target detection capabilities.
Overview

- Previous bathymetric LiDAR target and accuracy analysis:
 - Idealized control multibeam dataset (absolute reference)
 - All error attributed to LiDAR dataset
 - Subjective analysis

- If uncertainty is known, use tools such as CUBE
 - Derive TPU Model for Bathymetric LiDAR depths
 - Build CUBE surfaces
 - Compare how each datasets describe the same seafloor and targets
Shilshole Bay, Puget Sound

2005 – Manufactured Targets placed on seafloor

2005 - Reson 8101 Multibeam acquired

2007 – SHOALS-1000T Hydrographic LiDAR acquired

- August 27 to 29, 2007
- Bathymetric LiDAR data
- Digital Aerial Photography
- GPS Ground Control and tide gauge data
- From MHW to 20m Water Depth
- 20% overlap
Survey Area

- **Target ID**: N/A
- **Latitude**: 47.68 15.25N
- **Longitude**: 22.25 13.10W
- **Approximate Depth (m)**: 2.5

Target Description

- **Size**: x2x2m
- **Depth Range**: 7m – 40m
Seafloor Targets

2005

2m x 2m x 2m Target

2m x 2m x 1m Target

2007
Survey acquisition variables

- Spot Spacing: (2x2m, 3x3m, 4x4m, 5x5m)
- Flight Altitudes: (300m, 400m)
- Line Directions: (Same or opposing)
- Times of Day: (Day, Night)
- Coverage: (100%, 200%, 300%, 400%, 500%)
General LiDAR Processing Flow

SHOALS GCS
incl.
IVS Fledermaus and Applanix POSPac

HOF to HDCS

ASCII Files

Derive TPU

CARIS HIPS
(CUBE PROCESSING)
• **TPU**
 – the sum of all *random and systematic* uncertainties in the measurement process, including the uncertainty contribution of all sensors embedded in the SHOALS-1000T

• **Analytical TPU**
 – determine each sensor uncertainty a priori
 – may not be possible for LiDAR system
 • complex physical interaction of laser pulse with sea surface, sea water and seafloor.

Need an Alternative Method
Depth Variance as Proxy for Analytical TPU

- Determination of depth variance
- LiDAR bottom detection dependent on depth
 - Analysis carried out on depth ranges split in 2m increments (1-3m, 2-4m, ………, 14-16m, 15-17m)
- For each Range:
 - Variance estimated as a function of horizontal search radius
 - Variance is expected to grow as the radius increases
Variogram for Determining Node Variance

- Variance at node is determined by constant c in polynomial equation

$$y = x^n + x^2 + x + c$$
Variance Function for Each Depth Interval
Variance as a Function of Water Depth

- Fluctuates between 0.07 to 0.09m to 15m Water Depth
- Grows to 0.125m at 20m Water Depth
Variance Components

- Calculated Variance represents:
 - Total seafloor variance σ_T^2
 - Sensor variance (incl. Tides)
 - Seafloor (slope and roughness)

\[
\sigma_m^2 = \sqrt{\left((\sigma_T^2)^2 - (\sigma_S^2)^2\right)}
\]

$\sigma_m^2 = \text{Sensor variance}$

$\sigma_T^2 = \text{Total Variance}$

$\sigma_S^2 = \text{Seafloor Variance}$
Removal of Seafloor Variance

• Morphology Trend Observed in Multibeam
 – Slope gradient
 – Amplitude & frequency of general bottom roughness

• Used to Create a Synthetic Surface

• Calculate Node Variance for Synthetic Surface
 – Different point densities
 – Account for any sub-sampling effects
Variance of Synthetic Seafloor at Varying Point Density

\[\sigma_s^2 = \sim 0.015 \text{m} \]
Final Sensor Variance & TPU Compared to IHO Order 1

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Total Variance</th>
<th>Sensor Variance</th>
<th>Sensor StDev (TPU)</th>
<th>Sensor 2-StDev</th>
<th>IHO Order 1 (2-StDev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.083</td>
<td>0.058</td>
<td>0.240</td>
<td>0.481</td>
<td>0.501</td>
</tr>
<tr>
<td>3</td>
<td>0.085</td>
<td>0.059</td>
<td>0.243</td>
<td>0.486</td>
<td>0.502</td>
</tr>
<tr>
<td>4</td>
<td>0.072</td>
<td>0.050</td>
<td>0.223</td>
<td>0.446</td>
<td>0.503</td>
</tr>
<tr>
<td>5</td>
<td>0.072</td>
<td>0.050</td>
<td>0.223</td>
<td>0.446</td>
<td>0.504</td>
</tr>
<tr>
<td>6</td>
<td>0.071</td>
<td>0.049</td>
<td>0.222</td>
<td>0.443</td>
<td>0.506</td>
</tr>
<tr>
<td>7</td>
<td>0.070</td>
<td>0.048</td>
<td>0.220</td>
<td>0.440</td>
<td>0.508</td>
</tr>
<tr>
<td>8</td>
<td>0.064</td>
<td>0.044</td>
<td>0.210</td>
<td>0.419</td>
<td>0.511</td>
</tr>
<tr>
<td>9</td>
<td>0.063</td>
<td>0.043</td>
<td>0.208</td>
<td>0.416</td>
<td>0.514</td>
</tr>
<tr>
<td>10</td>
<td>0.065</td>
<td>0.045</td>
<td>0.212</td>
<td>0.424</td>
<td>0.517</td>
</tr>
<tr>
<td>11</td>
<td>0.067</td>
<td>0.046</td>
<td>0.215</td>
<td>0.430</td>
<td>0.520</td>
</tr>
<tr>
<td>12</td>
<td>0.067</td>
<td>0.046</td>
<td>0.215</td>
<td>0.430</td>
<td>0.524</td>
</tr>
<tr>
<td>13</td>
<td>0.076</td>
<td>0.053</td>
<td>0.230</td>
<td>0.459</td>
<td>0.528</td>
</tr>
<tr>
<td>14</td>
<td>0.067</td>
<td>0.046</td>
<td>0.215</td>
<td>0.430</td>
<td>0.532</td>
</tr>
<tr>
<td>15</td>
<td>0.092</td>
<td>0.064</td>
<td>0.253</td>
<td>0.507</td>
<td>0.537</td>
</tr>
<tr>
<td>16</td>
<td>0.090</td>
<td>0.063</td>
<td>0.250</td>
<td>0.501</td>
<td>0.542</td>
</tr>
</tbody>
</table>
Sensor Uncertainty v IHO Order 1
• TPU is valid for the water conditions at the time of survey

• Bathymetric LiDAR Uncertainty will vary depending on:
 – Local water column conditions
 – Seafloor reflectance
 – However, model can be applied to different locations with similar environmental conditions

• One TPU model does not fit all
 – Shilshole Bay model can be used in SE Alaska but not necessarily in Florida.
Comparison of LiDAR and Multibeam using CUBE

- Combined Uncertainty and Bathymetry Estimator (CUBE)

 - algorithm developed at the University of New Hampshire (Calder and Mayer, 2001) to validate soundings based on the understanding of uncertainty.

 - transforms randomly spaced data points to regularly spaced grid of depth estimates

 - For each grid node:
 - Depth
 - Uncertainty (from TPU)
 - Number of hypotheses
 - Hypothesis strength

 - Designed to aid in processing of dense multibeam datasets
CUBE with LiDAR Datasets, in CARIS HIPS

- CUBE surface with LiDAR data
 - 3x3m, 400% coverage
 - Likely hypothesis in green: relatively weak
 - Alternate hypothesis in red

Target B
2 x 2 x 2 m
7m Water Depth

5 LiDAR hits on target
CUBE with LiDAR Datasets

• CUBE selected a correct primary hypothesis
 – Relatively sparseness of LiDAR data, likely candidates

• However hypothesis over targets usually weak
 – They can still be filtered out in automatic editing for final surface creation

• Fine-tuned CUBE parameters still required
 – Provide stronger primary hypothesis on targets
• LiDAR data have few chances as primary hypothesis when compared to multibeam datasets of comparable uncertainty.

• Refinement of CUBE parameters is required for multibeam processing as well.

• Until then, fair comparison between the two datasets remains elusive
Conclusions

• TPU can be estimated for LiDAR depth intervals through **variance node analysis**
• Analysis can be performed over a small control area in water conditions very similar to the actual main survey area, and therefore could be calculated on a **project-by-project**, or **area-by-area** basis.
• This methodology for calculating TPU should be further refined and automated with the use of formal kriging techniques.
• At the time of writing, CUBE has not been successfully used to compare the LiDAR and multibeam datasets. However the authors feel that with further effort, particularly in choosing suitable CUBE parameters for hypothesis selection, this can be accomplished.
Thank you