Tightly Integrated Inertially-Aided Post Processed Virtual Reference Station (PPVRS) Technique for Marine Hydrography

Peter Canter
Richard Brennan
Edward Van Den Ameele
PPVRS - Why is this Important?

• Centimetric positioning for hydrographic surveying is of particular interest today due to the current trend towards using ellipsoidal altitude instead of heave and tidal reductions.
• Precise, sub-decimeter positioning can be accomplished on Marine surveys which were previously too far from shore.
• In many cases, it will not be necessary to mobilize GNSS reference stations. Existing public infrastructure can be used.
The Problem

- The challenge is to provide differential GPS positioning based on GPS carrier phase data in kinematic mode.
- To have a high degree of confidence and reliability in positioning in a wider range of environments than is currently possible.
- To achieve optimum quality from integrated inertial and satellite positioning.

Today

- Strict limitations are necessary to achieve a high position and orientation accuracy for Marine operation:
 - Inertially Aided Kinematic Ambiguity Resolution (IAKAR)
 - Maximum distance to base stations: 25 km
Solution

Tightly Integrated Inertially Aided Post Processed Kinematic (IAPPK) with post processed VRS (PPVRS) technology

Data Acquisition

Post Processing

GPS Network - VRS
Case Study – NOAA RUDE in the Chesapeake
PPVRS Marine – Data Flow

- POS Recorded Data
- Data Extraction and Quality Checking
- Reference Station Quality Check Network Adjustment
- Applanix Smart Base VRS Correction Generation
- Tightly Coupled Inertial/GNSS Processor and Smoother
- GPS Base Station Data
- Differential GNSS Data Import
- Download or Import
- SBET
- Quality Assurance
- Smoothed Best Estimate of Trajectory

CHC 2008
Case Study – Final PPVRS Network

GPS Network

6 Public Reference Stations

The Maximum distance from the survey to the nearest base station is 38 kms**

The Maximum distance between reference stations is 143 kms

An automated tool for internet download makes getting the reference station correction data very easy
The network adjustment uses GPS measurements, input base station coordinates, and computed baselines in a least squares adjustment.

A control station is selected as fixed in the adjustment.

24 hours of reference station data are required for this quality check in order to ensure the most accurate validation of base station coordinates.

If a shorter time period is used, centimetric accuracy in the final rover position cannot be guaranteed.

<table>
<thead>
<tr>
<th>Station</th>
<th>Input Coord</th>
<th>Status</th>
<th>Horizontal</th>
<th>Vertical</th>
<th>Total</th>
<th>Time Span</th>
<th>Output Coord</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIMS</td>
<td>Control</td>
<td>Control</td>
<td>0.000 m</td>
<td>0.000 m</td>
<td>0.000 m</td>
<td>23.88 h</td>
<td>Control</td>
</tr>
<tr>
<td>VAMI</td>
<td>Original</td>
<td>OK</td>
<td>0.008 m</td>
<td>0.044 m</td>
<td>0.045 m</td>
<td>23.88 h</td>
<td>Original</td>
</tr>
<tr>
<td>VARI</td>
<td>Original</td>
<td>OK</td>
<td>0.000 m</td>
<td>0.007 m</td>
<td>0.010 m</td>
<td>23.88 h</td>
<td>Original</td>
</tr>
<tr>
<td>HNFT</td>
<td>Original</td>
<td>OK</td>
<td>0.008 m</td>
<td>0.030 m</td>
<td>0.031 m</td>
<td>23.88 h</td>
<td>Original</td>
</tr>
<tr>
<td>DRV5</td>
<td>Original</td>
<td>OK</td>
<td>0.006 m</td>
<td>0.022 m</td>
<td>0.023 m</td>
<td>23.88 h</td>
<td>Original</td>
</tr>
<tr>
<td>COX5</td>
<td>Original</td>
<td>Bad Estimate</td>
<td>0.006 m</td>
<td>0.015 m</td>
<td>0.016 m</td>
<td>9.38 h</td>
<td>Disabled</td>
</tr>
<tr>
<td>CORB</td>
<td>Original</td>
<td>OK</td>
<td>0.019 m</td>
<td>0.024 m</td>
<td>0.031 m</td>
<td>23.88 h</td>
<td>Original</td>
</tr>
</tbody>
</table>
POSPac PPVRS Correction Generation

Reference Station Raw Data Analysis

<table>
<thead>
<tr>
<th>Station_ID</th>
<th>Total Gap</th>
<th>Max Gap</th>
<th>Min Gap</th>
<th>Unrepaired_CS</th>
<th>Simul_unrepaired_CS</th>
<th>REF2Traj_Centre(km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIM5</td>
<td>240.0</td>
<td>180.0</td>
<td>195.0</td>
<td>8</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td>VAMI</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>501</td>
<td>0</td>
<td>75.0</td>
</tr>
<tr>
<td>VARI</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>105</td>
<td>0</td>
<td>121.4</td>
</tr>
<tr>
<td>MERT</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>104</td>
<td>0</td>
<td>128.3</td>
</tr>
<tr>
<td>DRV5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>69</td>
<td>0</td>
<td>69.6</td>
</tr>
<tr>
<td>COVX</td>
<td>5460.0</td>
<td>3630.0</td>
<td>1830.0</td>
<td>564</td>
<td>4</td>
<td>65.8</td>
</tr>
<tr>
<td>C0RB</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>103</td>
<td>0</td>
<td>144.7</td>
</tr>
</tbody>
</table>

SmartBase Statistics

- **SmartBase Status:** PROC_STATUS_OK
- **Primary Station ID:** DRV5
- **Number of Reference Stations:** 7
- **Percentage of Primary Station Measurement Usage:** 94.9%
- **Average Number of satellites per epoch:** 8.5
- **Total full data gap:** 0 s
- **Total individual satellite data gap:** 13000 s

![Survey Area](image)
POSPac 5 Marine – Data Flow

POSPac 5 Marine – Data Flow

POSSPS

GPS Base Station Data

Differential GNSS Data Import
Download or Import

Reference Station Quality Check Network Adjustment

Applanix Smart Base VRS Correction Generation

Tightly Coupled Inertial/GNSS Processor and Smoother

CHC 2008
Tightly Integrated Post Processed Solution using GPS Network Technology
Tightly Integrated GPS Processing Mode
Closest Station
SBET Altitude VDatum Derived

Sea Floor Images

MLLW Heave Tidal Zoning Derived

~1kms x .5kms

CHC 2008
Difference Plot of Vertical

Difference range -0.29 to -0.74

Differences are mostly systematic and attributed to datum

There is a lever arm issue in this data which explains the striping
-Post processing to find lever arms is a powerful tool
Conclusions

• The PPVRS process provides a logistically simple method, when compared with the traditional IAKAR mechanization, for achieving sub-decimeter accuracy without the need to install and maintain dedicated base stations.

• This is particularly true in locations with dense Continuously Operating Reference Stations such as the east coast of the continental United States where baselines of less than 100 km may be obtained.

• The overall process is simple and can be easily added to existing hydrographic data processing workflows without a significant decrease in processing productivity.

• Much of Europe and North America, including the entire continental U.S. inland waters and near-shore areas, can now obtain centimetric positioning accuracy more efficiently by utilizing the existing reference station networks as we have described.
Acknowledgments

- LCDR Rick Brennan earned a B.S. degree in Civil Engineering from the Citadel in Charleston, South Carolina and a M.S. in Ocean Mapping at NOAA’s Joint Hydrographic Center. LCDR Brennan started his NOAA career in 1992 and has had various assignments on NOAA vessels. LCDR Brennan served as the Chief of NOAA’s Hydrographic Systems and Technology Program and as the Commanding Officer aboard the NOAA Ship RUDE.

- LCDR E.J. Van Den Ameele is the Chief of NOAA's Hydrographic Systems and Technology Programs of the Coast Survey Development Laboratory in Silver Spring, Maryland, USA. He has been working in NOAA hydrography for 14 years and has held positions at sea aboard NOAA Ships MT MITCHELL, RAINIER, and most recently FAIRWEATHER, and in the Office of Coast Survey at the Atlantic and Pacific Hydrographic Branches.